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Probabilistic properties of wavelets in kinetic surface roughening

A. Bershadskii
ICAR, P.O. Box 31155, Jerusalem 91000, Israel

~Received 17 January 2001; published 23 July 2001!

Using the data of a recent numerical simulation@M. Ahr and M. Biehl, Phys. Rev. E62, 1773 ~2000!# of
homoepitaxial growth it is shown that the observed probability distribution of a wavelet based measure of the
growing surface roughness is consistent with a stretched log-normal distribution and the corresponding branch-
ing dimension depends on the level of particle desorption.
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I. INTRODUCTION

In recent years different physical and mathematical id
and methods have been applied to study problems of ep
ial crystal growth that are important for modern technolo
From the physical point of view it is an interesting examp
of phenomena far from thermal equilibrium~see, for in-
stance,@1# and references therein!, and the recently discov
ered remarkable analogy with fluid turbulence@2,3# allows
the application of ideas and methods used in that field
explore it. In particular, extended self-similarity, which w
discovered in fluid turbulence, was then successfully use
study kinetic surface roughening@2#. The wavelet transform
modulus maxima method, also applied to processes relate
turbulence, was recently used in the field of rough grow
surfaces@4,5#. The nature of extended self-similarity in tu
bulence itself is still unclear. In a recent paper@6# the appear-
ance of extended self-similarity in turbulence is related
log-normal-like processes. Numerical simulations perform
in @6# show the log-normal-like behavior in a very wide in
terval of scales~including the so-called viscous interval!.
Due to the strong influence of molecular diffusion on moti
in the viscous interval of scales the simple multiplicati
splitting of eddies~inviscid cascade@7#! cannot be realized in
this interval of scales@7,8#, and the direct relation of log
normal-like behavior to simple cascade processes beco
questionable. Therefore, one might expect that a more
phisticated process~e.g., a branching cascade@11#! is respon-
sible for the log-normal-like behavior when molecular diff
sion effects become significant. This observation and
above mentioned analogy between kinetic surface rough
ing and fluid turbulence allows us to seek evidence of l
normal-like distributions related to branching cascade p
cesses in kinetic surface roughening as well.

Usually, we have two main problems in identifying re
evant probabilistic properties of space-extended stocha
systems. First of all there is the problem of choosing
adequate measure and the second problem is to identify
probability density function corresponding to this measu
For some scale-invariant systems the method of mom
can be used to solve~in some sense! the second problem
However, when we are dealing with moments the first pr
lem becomes even more difficult. Indeed, the height-he
correlation functions of an arbitrary orderp

cp~r ,t !5^uh~x,t !2h~x1r ,t !up& ~1!
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are usually used in the method of moments. However, i
now well known that the correlation function method c
easily be corrupted by polynomial trends inh(x) @9#. There-
fore, a different method~the so-called wavelet transform
modulus maxima method! was recently developed to avoi
this ~and some other! problems@4# and then this method wa
successfully applied to the kinetic surface roughening pr
lem @5#. In this method the wavelet transform of a functio
h(x) is defined as its convolution with the complex conj
gate of the waveletc, which is dilated with the scaler and
rotated by an angleQ:

Mc~h,b,r !;r 22E d2xc* @r 21R2Q~x2b!#h~x!, ~2!

whereRQ is the usual two-dimensional rotation matrix. Th
wavelet can~in principle! be an arbitrary normalized func
tion. In particular, the wavelet

cd~x!5d~x!2d~x1n!

~wheren is an arbitrary unit vector! leads to

Mc~h,r !;h~b!2h~b1rRQn!.

That is, in this particular case we return to the usual cor
lation function moments

cp~rRQn!;E dbuMc~h,r !up.

To avoid the weakness of the correlation function metho
more complex wavelet can be used. In particular, in Ref.@5#
Gaussian based wavelets were successfully used. Then
wavelet transform modulus maxima~WTMM ! are defined as
local maxima of the modulusuMc(h,r )u for fixed r. These
wavelet transform modulus maxima lie on connected curv
which trace structures of size;r on the surface. The strengt
of each is characterized by the maximal value ofuMc(h,r )u
along the line, the so-called wavelet transform modu
maxima maximum ~WTMMM !. When proceeding from
large to smallr, successively smaller structures are resolv
Connecting the WTMMM at different scales yields the s
L(r ) of maxima linesl, which leads to the locations of th
singularities ofh(x) in the limit r→0.

Scaling of the partition function
©2001 The American Physical Society04-1
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Zp5(
l PL

~ sup
~b,r 8!P l ,r 8<r

uMc~h,b,r 8!u!p;r tp ~3!

for r→0 is defined on the subsetL(r ) of lines that cross the
scaler. Since2t0 can be identified as the dimension of th
set of singularities ofh(x) we can define the scaling of th
corresponding wavelet moments as

^M p&;r 2t0Zp;r tp2t0 ~4!

and then define the wavelet generalized Hurst exponent

Hp
w5

~tp2t0!

p
. ~5!

Figure 1 shows the typical dependence of the moments^M p&
on r.

II. MODEL

In Ref. @5# a full-diffusion Monte Carlo model of ho-
moepitaxial growth of a material with simple cubic lattic
structure under solid on solid conditions was investiga
using the wavelet transform modulus maxima maxim
method. In this model the crystal can be described by a t
dimensional array of integers that denote the heighth(x) of
the surface. The authors of Ref.@5# simulated the deposition
of 23104 monolayers at a growth rate of one monolayer p
second on a lattice of 5123512 unit cells using periodic
boundary conditions. Particles on the surface hop to nea
neighbor sites with Arrhenius ratesn0 exp@2(Eb1nEn)/kbT#,
whereEb andEn are the binding energies of a particle to t
substrate and to itsn nearest neighbors, andn0 is the attempt
frequency. In contrast to earlier investigations of simi
models@10#, in the investigation performed in Ref.@5# the
desorption of particles from the surface with rat
n0 exp@2(Ed1nEn)/(kbT)# ~where Ed.Eb! was permitted.
The authors of Ref.@5# chose parametersEb50.9 eV and
En50.25 eV,n051012/s, andT5450 K to calculate the ex
ponenttp for several values ofEd .

FIG. 1. ^M p& versusr /h for p51,2,3,4,5 ~upper sets of data
correspond to larger values ofp; h is a molecular scale!.
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III. STRETCHED LOG-NORMAL DISTRIBUTION

It is shown in Ref. @9# that the central limit theorem
~which results in the log-normal distribution for the ordina
cascade models! applied to fractals leads to a generalizati
of the normal distribution, thestretchednormal distribution
and, consequently, to the stretched log-normal distribut
for branching cascades on fractals. The stretched normal
tribution has the form

P~M !;exp2S uM2Mcu2d

2s2 D , ~6!

wheres andMc are some parameters andd is the branching
dimension@11#. The corresponding stretched log-normal d
tribution is

P~M !;
1

M
exp2S u ln M2 ln Mcu2d

2s2 D . ~7!

The moments corresponding to the stretched log-normal
tribution can be estimated as

^M p&;E
0

`

M p exp2
u ln M2 ln Mcu2d

2s2 S 1

M
dM D . ~8!

Let introduce the variable

x5 ln M2 ln Mc . ~9!

Then

^M p&;eapE
2`

`

expS px2
uxu2d

2s2 Ddx. ~10!

We denote

f ~x!5px2
uxu2d

2s2 ~11!

and find the value ofx where this function has its maximum
using the equation

f 8~x!5p2
d

s2 uxu2d2150 ~12!

(p.0). Equation~12! has the solution

x05S s2p

d D a

, ~13!

where

a5
1

2d21
. ~14!

The nth derivative off (x) at pointx0 is

f ~n!~x0!52
d~2d21!¯~2d2n11!

s2 x0
2d2n . ~15!
4-2
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Then a Taylor series for the functionf (x) at pointx0 can be
written as

f ~x!5 f ~x0!2
~s2p!2da

s2 gS x2x0

x0
D , ~16!

where

gS x2x0

x0
D5 (

n52

`
d2a

n!
~2d21!¯~2d2n11!S x2x0

x0
D n

.

~17!

The moments can now be estimated as

^M p&;eap1 f ~x0!E
2`

`

exp$2hg@~x2x0!/x0#%dx, ~18!

where

h5
1

s2 ~s2p!2da. ~19!

Let us introduce the variable

y5
x2x0

x0
. ~20!

Then we can rewrite the representation~18! as

^M p&;x0eap1 f ~x0!E
2`

`

exp@2hg~y!#dy. ~21!

Now the function

g~y!5 (
n52

`
d2a

n!
~2d21!¯~2d2n11!yn ~22!

is independent ofs andp, i.e., this function is independent o
the parameterh ~for a fixed value of the branching dimensio
d!. For largeh, i.e., for

h@1, ~23!

the integral in the right-hand side of Eq.~21! is dominated by
miny$g(y)%, i.e.,

^M p&;x0eap1 f ~x0!e2h miny$g~y!%. ~24!

Since for 2d21.0 the real functionf (x) has generally one
maximum at the pointx0 only, this is the absolute maximum
of this function, and, therefore,g(y)>0. Hence, miny$g(y)%
50 and we obtain from Eq.~24!

^M p&;x0eap1 f ~x0!. ~25!

It is easy to show using Eqs.~19! and ~23! that for

s2.S 2d

~2d21!2eD 2d

~26!
02710
we can neglect the multiplierx0 in comparison with the ex-
ponent in the right-hand side of representation~25!, and we
obtain from~25!

^M p&;exp@ap1p~121/2d!~s2p/d!a#. ~27!

Using Eq.~27! we then obtain a generalized scaling re
tionship based on the stretched log-normal distribution,

^Mq&

^Mz&q/z ;S ^M p&

^Mz&p/zD q~qa2za!/p~pa2za!

. ~28!

Substituting Eqs.~4! and ~5! into Eq. ~28! we obtain the
relationship

r qHq
w

r qHz
w ;

r qHp
w

~qa2za!/~pa2za!

r qHz
w

~qa2za!/~pa2za!

and then the functional equation forHp
w

Hq
w2Hz

w

Hp
w2Hz

w 5
qa2za

pa2za . ~29!

The general solution of this equation is

Hp
w5a1bpa, ~30!

wherea andb are some constants.
Figures 2 and 3 show the wavelet Hurst exponentsHp

w

calculated using the data obtained in Ref.@5# for two values
of Ed51 eV and` eV, respectively~the valueEd5` eV
corresponds to the case when desorption is forbidden!. In
these figures the horizontal axes are chosen to provide c
parison with the representation~30!. The straight lines~best
fit! are drawn to indicate consistency of the data with
stretched log-normal distribution. ForEd5` the parameter
a.1.3 and, consequently, the branching dimensiond

FIG. 2. Hp
w versusp1.1 for Ed51 eV. The straight line~best fit!

indicates agreement between the data and Eq.~30! with a51.1
~which corresponds to the analytic branching cascade with bra
ing dimensiond.0.95!.
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.0.88, while for Ed51 eV the parametera.1.1 and the
branching dimensiond.0.95.

Finally, it should be noted that different probability distr
butions can lead to the same relationships between mom
In particular, the stable Levy laws lead formally to the sa
relation ~30! as the stretched log-normal distribution. How
ever, for the stable Levy laws a strong restriction on
parametera, a<1, appears as a necessary condition~see, for
instance,@12#!. Since, in the case considered above, we

FIG. 3. Hp
w versusp1.3 for Ed5`. The straight line~best fit!

indicates agreement between the data and Eq.~30! with a51.3
~which corresponds to the analytic branching cascade with bra
ing dimensiond.0.88!.
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taineda.1 one can conclude that for kinetic surface roug
ening we are dealing with the stretched log-normal distrib
tion for which ~in contrast with the stable Levy laws! the
parametera can take values larger than 1.

IV. DISCUSSION

Since forEd51 eV the value of the exponenta.1.1 is
not far from its log-normal valuea51, the difference be-
tween these values ofa should be compared with the accu
racy of the calculations oftp in Ref. @5#. At the value of
Ed51 eV the maximum error of the calculations oftp in
Ref. @5# is about 1%. This accuracy allows us to be confide
that even forEd51 eV the simple log-normal state is still no
reached. It is an interesting problem for future simulations
check whether forEd,1 eV we can reach the log-norma
state.

In Ref. @5#, tp was calculated for both positive and neg
tive p. However, we can use only the data for positive valu
of p because the calculations performed in Sec. III allow
to operate with negative values ofp for integer branching
dimensions only~which is not the case here!. Expansion of
the method suggested in Sec. III to negative values ofp also
seems to be an interesting problem for future investigatio
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