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Probabilistic properties of wavelets in kinetic surface roughening
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Using the data of a recent numerical simulatjfdsh Ahr and M. Biehl, Phys. Rev. B2, 1773(2000] of
homoepitaxial growth it is shown that the observed probability distribution of a wavelet based measure of the
growing surface roughness is consistent with a stretched log-normal distribution and the corresponding branch-
ing dimension depends on the level of particle desorption.
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[. INTRODUCTION are usually used in the method of moments. However, it is
now well known that the correlation function method can
In recent years different physical and mathematical ideagasily be corrupted by polynomial trendstifx) [9]. There-
and methods have been applied to study problems of epitafere, a different methodthe so-called wavelet transform
ial crystal growth that are important for modern technology.modulus maxima methgdvas recently developed to avoid
From the physical point of view it is an interesting examplethis (and some othé¢problems 4] and then this method was
of phenomena far from thermal equilibriufsee, for in-  successfully applied to the kinetic surface roughening prob-
stance[1] and references therginand the recently discov- lem [5]. In this method the wavelet transform of a function
ered remarkable analogy with fluid turbulen&3] allows  h(x) is defined as its convolution with the complex conju-
the application of ideas and methods used in that field t@ate of the wavelety, which is dilated with the scale and
explore it. In particular, extended self-similarity, which was rotated by an angl®:
discovered in fluid turbulence, was then successfully used to
study kinetic surface rougheniig]. The wavelet transform
modulus maxima method, also applied to processes related to
turbulence, was recently used in the field of rough growing
surfaceqd4,5]. The nature of extended self-similarity in tur- whereRg, is the usual two-dimensional rotation matrix. The
bulence itself is still unclear. In a recent pap@fthe appear- wavelet can(in principle) be an arbitrary normalized func-
ance of extended self-similarity in turbulence is related tation. In particular, the wavelet
log-normal-like processes. Numerical simulations performed
in [6] show the log-normal-like behavior in a very wide in- P s(X)=8(X)— o(X+n)
terval of scales(including the so-called viscous interyal
Due to the strong influence of molecular diffusion on motion(wheren is an arbitrary unit vectgrleads to
in the viscous interval of scales the simple multiplicative
splitting of eddieginviscid cascadg7]) cannot be realized in M, (h,r)~h(b)—h(b+rRgn).
this interval of scale$7,8], and the direct relation of log-
normal-like behavior to simple cascade processes becomdd#at is, in this particular case we return to the usual corre-
questionable. Therefore, one might expect that a more sdation function moments
phisticated proces®.g., a branching cascaflkl)) is respon-
sible for the log-normal-like behavior when molecular diffu- D
sion effects become significant. This observation and the CP(rR@)n)NJ db[M ,(h,r)]P.
above mentioned analogy between kinetic surface roughen-
ing and fluid turbulence allows us to seek evidence of log-To avoid the weakness of the correlation function method a
normal-like distributions related to branching cascade promore complex wavelet can be used. In particular, in Rgf.
cesses in kinetic surface roughening as well. Gaussian based wavelets were successfully used. Then, the
Usually, we have two main problems in identifying rel- wavelet transform modulus maxiff& TMM ) are defined as
evant probabilistic properties of space-extended stochastigcal maxima of the modulugvi J(h,r)| for fixed r. These
systems. First of all there is the problem of choosing anwavelet transform modulus maxima lie on connected curves,
adequate measure and the second problem is to identify thehich trace structures of sizer on the surface. The strength
probability density function corresponding to this measureof each is characterized by the maximal value}Mf.,,(h,r)|
For some scale-invariant systems the method of momentsiong the line, the so-called wavelet transform modulus
can be used to solvén some sengethe second problem. maxima maximum(WTMMM). When proceeding from
However, when we are dealing with moments the first probiarge to smalk, successively smaller structures are resolved.
lem becomes even more difficult. Indeed, the height-heighConnecting the WTMMM at different scales yields the set

M¢(h,b,r)~r*2f d2xy*[r R_g(x—b)]h(x), (2

correlation functions of an arbitrary ordpr L(r) of maxima linesl, which leads to the locations of the
singularities ofh(x) in the limit r—0.
Ccp(r,)=(|h(x,t) —h(x+r,1)[P) (1) Scaling of the partition function
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Ill. STRETCHED LOG-NORMAL DISTRIBUTION

It is shown in Ref.[9] that the central limit theorem
(which results in the log-normal distribution for the ordinary
cascade modelsapplied to fractals leads to a generalization
of the normal distribution, thetretchednormal distribution
and, consequently, to the stretched log-normal distribution
for branching cascades on fractals. The stretched normal dis-
tribution has the form

log,,<MP>

O 2N W s OO N®

P(M)~exp— (6)

|M_Mc|2d
20? ’

|Og10r/1’] whereo andM . are some parameters adds the branching
dimension11]. The corresponding stretched log-normal dis-
FIG. 1. (MP) versusr/y for p=1,2,3,4,5(upper sets of data tribution is
correspond to larger values pf 7 is a molecular scaje
[INM—InM,|%

20?

)

1
P(M)~—exp—(
Z,=> ( sup IMy(hbr)P~r (3 M

leL (byr)elr's
The moments corresponding to the stretched log-normal dis-

for r—0 is defined on the subsk(r) of lines that cross the tribution can be estimated as
scaler. Since— 7 can be identified as the dimension of the

o _ 2d
set of singularities oh(x) we can define the scaling of the <Mp>~f MP exp— [INM—=InM | (idM) @®
i 20° M '
corresponding wavelet moments as 0 o
(MPy~r~70Z ~r 70 4) Let introduce the variable
_ _ x=InM—=InM,. (9)
and then define the wavelet generalized Hurst exponents as
Then
(Tp_ 7o) 2d
HY =———. 5 * X
P P ® (Mp>~eapf_ ex;{ pPX— %)dx. (10)
Figure 1 shows the typical dependence of the mom@Mty  \ye denote
onr.
fo0=px- 20 (1
X)=pX— 5
Il. MODEL PX= 202

In Ref. [5] a full-diffusion Monte Carlo model of ho- and find the value ok where this function has its maximum
moepitaxial growth of a material with simple cubic lattice using the equation
structure under solid on solid conditions was investigated
using the wavelet transform modulus maxima maximum
method. In this model the crystal can be described by a two-
dimensional array of integers that denote the helgl) of
the surface. The authors of R¢8] simulated the deposition (p>0). Equation(12) has the solution
of 2x 10* monolayers at a growth rate of one monolayer per
second on a lattice of 522512 unit cells using periodic B o’p|“
boundary conditions. Particles on the surface hop to nearest Xo= d |
neighbor sites with Arrhenius rateg exd — (E,+nE,)/k,T],
whereE, andE,, are the binding energies of a particle to the where
substrate and to its nearest neighbors, ang is the attempt
frequency. In contrast to earlier investigations of similar 1
models[10], in the investigation performed in Rdb] the 4T 2d-1° (14
desorption of particles from the surface with rates
voexd —(Eq+nE)/(k,T)] (where E4>E,) was permitted. The nth derivative off(x) at pointx, is
The authors of Ref[5] chose parameter§,=0.9eV and
E,=0.25eV, vo=10'%s, andT=450K to calculate the ex- gy 1 d(2d—1)--(2d—n+1) o4,

i (%0) = 2 Xp . (19

ponentr, for several values oE. o

d
F'(x)=p——x*"*=0 (12

(13
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Then a Taylor series for the functidifx) at pointx, can be
written as

2~ 2da X— X
fo0=fow-“o—g ). a9
where
X—X) w d°¢ N X—Xo|"
g( % _nzz - (2d=1)-+(2d—n+1) % )
(17

The moments can now be estimated as

[

M7y~ 10 [~ expf—hgl (x—xo)xoljdx (19

where
h= 5 (o2p)20e (19
o2 '
Let us introduce the variable
X—Xg
Y= (20
Then we can rewrite the representatid®) as
<Mp>~Xoeap”(X°>f exd —hg(y)ldy. (21
Now the function
g(y)=2>, ——(2d=1)---(2d=n+1)y" (22

=2 N

is independent of andp, i.e., this function is independent of
the parameteh (for a fixed value of the branching dimension

d). For largeh, i.e., for
h>1, (23

the integral in the right-hand side of E®1) is dominated by
min{g(y)}, i.e.,

(MP)~xqeP* f(xolg~hmin{g(y)} (24)

Since for 21— 1>0 the real functiorf(x) has generally one

maximum at the poink, only, this is the absolute maximum

of this function, and, thereforgy(y)=0. Hence, migg(y)}
=0 and we obtain from Eq24)

(MP)~x,e3P*0), (25)
It is easy to show using Eq§19) and (23) that for
2d 2d
2
o >(—2_(2d—1) e) (26)
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FIG. 2. Hy versusp™* for Eq=1 eV. The straight lingbest fi
indicates agreement between the data and (B@). with a=1.1
(which corresponds to the analytic branching cascade with branch-
ing dimensiond=0.95).

we can neglect the multipliety in comparison with the ex-
ponent in the right-hand side of representati@h), and we
obtain from(25)

(MPy~exd ap+p(1—1/2d)(o?p/d)*]. (27

Using Eq.(27) we then obtain a generalized scaling rela-
tionship based on the stretched log-normal distribution,

(M%)
<MZ>Q’ZN(

(MP)
<Mz>p/z

a@*—z"/p(p*—2z%)
) (28)

Substituting Egs(4) and (5) into Eg. (28) we obtain the
relationship

pHy  paHg (@ =z/(p*—2z%)

(aHY  LaHE (@ = 2)(p 2%
and then the functional equation fbl’g’

Hy—H; q*—z°

=—". (29
Hy—H7 p*-z
The general solution of this equation is
Hy=a+bp%, (30)

wherea andb are some constants.

Figures 2 and 3 show the wavelet Hurst exponemﬁé
calculated using the data obtained in Réil. for two values
of Eq=1eV andx» eV, respectively(the valueE =« eV
corresponds to the case when desorption is forbiddien
these figures the horizontal axes are chosen to provide com-
parison with the representati¢g80). The straight linegbest
fit) are drawn to indicate consistency of the data with the
stretched log-normal distribution. F&;=o the parameter
a=1.3 and, consequently, the branching dimension
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0.55 taineda>1 one can conclude that for kinetic surface rough-
ening we are dealing with the stretched log-normal distribu-
tion for which (in contrast with the stable Levy laywshe
05} parametefx can take values larger than 1.

IV. DISCUSSION

w

2 045] Since forE4=1 eV the value of the exponent=1.1 is
not far from its log-normal valuer=1, the difference be-
tween these values ef should be compared with the accu-
racy of the calculations of,, in Ref. [5]. At the value of
Eq=1eV the maximum error of the calculations of in
Ref.[5] is about 1%. This accuracy allows us to be confident
035 : ' : : that even folEg= 1 eV the simple log-normal state is still not
reached. It is an interesting problem for future simulations to
p1-3 check whether folE4<1 eV we can reach the log-normal
state.
FIG. 3. H versusp? for E4=2. The straight line(best fi In Ref.[5], 7, was calculated for both positive g_nd nega-
indicates agreement between the data and (B0, with a=1.3  tVep. However, we can use only the data for positive values

(which corresponds to the analytic branching cascade with branct2f P because the calculations performed in Sec. Ill allow us
ing dimensiond=0.89). to operate with negative values pffor integer branching

dimensions only(which is not the case hereExpansion of

~0.88, while forEq=1eV the parameterr=1.1 and the the method suggested in Sec. Il to negative valugs @ito
branching dimension=0.95 seems to be an interesting problem for future investigations.

Finally, it should be noted that different probability distri-
butions can lead to the same relationships between moments.
In particular, the stable Levy laws lead formally to the same The author is grateful to M. Ahr for providing his data
relation (30) as the stretched log-normal distribution. How- (with M. Biehl), to T. Nakano for discussions, and to the
ever, for the stable Levy laws a strong restriction on theMachanaim Cente(Jerusalemand the Graduate School of
parametew, a<1, appears as a necessary condifeee, for  Science and Engineering of the Chuo Universitgkyo) for
instance[12]). Since, in the case considered above, we obsupport.
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